[%	R-N	PoCHo-	CN).	100	95	65	85	06	84	72	11	55	50	sample sample iroxide
	Theor.			no.	8.7	12.4	19.2	19.2	19.2	œ	- oc	8	20	192	in 1-g.s in 1-g.s um hyd
	Ŧ	+								14	14	14			amine amine potassi
l'roduet-		v Secondary		no.										100	o total tertiary r: mg.
		Tertiary	amine	no.e	234	182	102	125	134.7	126.4	110	109.6	167	109	aquiv. t uiv. to numbe rtiary).
		Total	amine	$no.^d$	236	192.9	155.4	150.6	150.2	150.5	152	153.5	195.6	209	^{<i>d</i>} Total amine number: mg. potassium hydroxide equiv. to total amine in 1-g. sample ertiary amine number: mg. potassium hydroxide equiv. to tertiary amine in 1-g. sample primary and secondary amine). ^{<i>f</i>} Secondary amine number: mg. potassium hydroxide ration after addition of salicylaldehyde; subtract tertiary).
			Wt.,	ಮ	39	132	365	352	218	346	363	311 -	136	132	sium hy um hyd Seconda yde; su
		tion	Time,	hr.	22	17	26	24	29	25	24	24	18	18	. potass potassi ne). ^f { ylaldehy
		-Reaction-	Temp.,	°C.	70-76	70-74	72	72	70-75	70-78	70-78	70 - 80	72	72	ber: mg er: mg. ary amir a of salic
			MeOH,	ы. Ы	4	5	10	10	5 C	15	15	13	ю	ŋ	ne num c numb second additior
			-Aerylonitrile-	Mole	0.396	1.17	2.35	2.35	1.41	2.19	2.19	1.79	1.17	1.17	otal ami ary amin 1ary and 1n after 2
			Aerylo	Ċ	21	62	125	125	75	116	116	95	62	62	n. ^d T ^e Tertis ate prim titratio
			(ಲೆ	10	20	30	30	ଷ୍ଟ	27	37°	35°	15	15	rious ru vent). • acetyl: iiary by
				Size	(20 - 50)	(20 - 50)	(20 - 50)	(50-100)	(50-100)	(50-100)	(50-100)	(50 - 100)			^{σ} Reused from previous run. ^{d} Total amine number: mg. potassium hydroxide equiv. to total amine in lacial acetic acid solvent). ^{σ} Tertiary amine number: mg. potassium hydroxide equiv. to tertiary amine in er sample treated to acetylate primary and secondary amine). ^{f} Secondary amine number: mg. potassiun ne secondary tertiary by titration after addition of salicyladehyde; subtract tertiary).
	Reactants		Resin ⁽	Name	Dowex 50W-4X	Dowex 50W-4X	Dowex 50W-4X	Dowex 50W-4X	Dowex 50W-1X	Dowex 50W-1X	Dowex 50W-1X	Dowex 50W-1X	XE-89	Duolite C-63	ty amines. ^c Reused ric acid in glacial aceti oric acid after sample od: determine seconds
				Mole	0.17	0.49	1.0	1.0	0.64	1.0	1.0	0.85	0.49	0.49	Il oil fat z perchlo g perchlc le (methc
				Ċ	22	91	276	276	177	273	273	233	91	91	fixed ta on using ion usin g. sampl
			Amine	no.	433.7	303	205	205	205	206	206	206	303	303	-wet. ^b N tric titrati tric titrati nine in 1- _f
				Name	n-C ₈ H ₁₆ NH ₂	$C_{12}H_{24}NH_2$	$C_{18}H_{36}NH_2$	$C_{18}H_{36}NH_2$	C ₁₈ H ₂₆ NH ₂	C ₁₈ H ₃₆ NH ₂ ^b	$C_{18}H_{36}NH_2^b$	C ₁₈ H ₃₆ NH ₂ ^b	$C_{12}H_{24}NH_2$	$C_{12}H_{24}NH_2$	^{a} Weight-methanol-wet. ^{b} Mixed tall oil fatty amines. (method: potentiometric titration using perchloric acid in gl (method: potentiometric titration using perchloric acid afte equiv. to secondary amine in 1-g. sample (method: determit
			Run	по.	1	2	ŝ	4	ы Ч	6a	q	ల	1-	×	^a We (metho (metho equiv. t

Notes

SAMUEL F. REED

Rohm & Haas Company, Redstone Arsenal Research Division, Huntsville, Alabama

Received July 16, 1962

In connection with other studies in progress in this laboratory it was desired to have a source of 3pentadienone (divinyl ketone). 3-Pentadienone has previously been prepared by the dehydrochlorination of di(β -chloroethyl) ketone² and by the thermal cracking of di(β -methoxyethyl)ketone.³ Both methods were rejected due to a number of inconveniences connected with the various reactions involved. A route which appeared promising was the oxidation of divinylcarbinol under the mild conditions exemplified in the manganese dioxide oxidation of allylic alcohols, a reaction which has been studied in some detail with satisfactory results being reported in numerous instances.⁴

Various factors exert an influence on the rate of the reaction and the ultimate yield of the oxidized product. The type of manganese dioxide employed appears to be the most important single factor. It was found that divinylcarbinol could be oxidized to 3-pentadienone in moderate yields employing manganese dioxide of four different types. Manganese dioxide (type A) was purchased commercially⁵ and used as received. Manganese dioxides (types B and C) were prepared according to the procedure of Harfenist⁶ by pyrolysis of manganese carbonate (type B) followed by washing with dilute nitric acid and thorough drying (type C). More consistent yields of the ketone were obtained employing a grade of manganese dioxide (type D) prepared by the method of Attenburrow and coworkers.7

The oxidations were carried out in chloroform or methylene chloride solutions with equal results employing ratios of divinylcarbinol to manganese dioxide of from 1/5 to 1/15. The yield data is presented in Table I. Although the yields varied considerably even with oxidations carried out using a single type of manganese dioxide a ratio of 1/10was found to give near optimum yields. The extent of the reaction was followed by infrared spectroscopy which showed in most instances that the reaction was essentially complete within four to

(1) This work was performed under sponsorship of the U. S. Army under Contract No.DA-01-021 ORD-11878.

(2) Johannes Nelles, U. S. Patent 2,105,792 (January 18, 1938).

(3) I. N. Nazarov and I. V. Torgov, Bull. Acad. Sci. URSS Classe Sci. Chim., 495 (1946); Chem. Abstr., 42, 7735 (1948).
(4) For leading reference see R. M. Evans, Quart. Rev., 13, 61

(4) For leading reference see R. M. Evans, Quart. Rev., 13, 61 (1959).

(5) Leco manganese dioxide obtained from E. H. Sargent and Co.
(6) N. Harfenist, A. Bavley, and W. A. Lazier, J. Org. Chem., 19, 1608(1954).

(7) J. Attenburrow, A. F. B. Cameron, J. H. Chapman, R. M. Evans, B. A. Hems, A. B. A. Jansen, and T. Walker, J. Chem. Soc., 1094 (1952).

LABLE

TABLE I

MAXIMUM YIELD DATA (%) FOR OXIDATION OF DIVINYL-CARBINOL WITH MANGANESE DIOXIDE

Manganese Ratio divinyl carbinol/manganese dioxide

Manganese	Ratio divinyi carbinor/manganese dioxide								
dioxide	1/5	1/10	1/15						
Type A	10 - 20	28 - 50	30 - 50						
Type B	5 - 12	15 - 26	20 - 27						
Type C .	5 - 15	23 - 41	22 - 40						
Type D	18 - 20	40 - 49	39 - 50						

six hours. Extended reaction periods did not greatly improve the yield of the ketone.

The 3-pentadienone was isolated by vacuum distillation in the presence of a polymerization inhibitor, hydroquinone. It was identified by elemental analysis, refractive index, and infrared spectroscopy. Vapor phase chromatography showed the isolated product to be 98–99% pure, containing a small quantity of the carbinol as an impurity in some instances.

In one reaction the ketone was isolated as the 2,4-dinitrophenylhydrazone in a 96% yield indicating that a considerable part of the product may have been lost during its isolation. Attempts to prepare the oxime and dimethyl ketal were unsuccessful using conventional methods due to polymerization of the ketone.

Experimental⁶

Divinylcarbinol was prepared by the method of Ramsden.⁹ The oxidation of the carbinol was carried out as follows: To a 200-ml. three-necked flask equipped with mechanical stirrer, condenser, and thermometer (all outlets covered with Drierite tubes) was introduced 10.0 g. (0.12 mole) of divinylcarbinol in 150 ml. of dry chloroform. One hundred grams of manganese dioxide (type A) was added over a period of 15 min. and the mixture stirred rapidly at ambient temperature for 24 hr. The infrared spectrum of the solution indicated a carbonyl-containing compound and only a trace of residual carbinol. The solid material was removed by filtration and the major part of the solvent removed at reduced pressure until the volume was reduced to 25-30 ml. The liquid residue to which 0.25 g. hydroquinone had been added was then distilled through an 18-in. semimicro spinning band column to give 4.97 g. (50%) 3-pentadienone, b.p. 37-38° (50 mm.), n²⁰D 1.4497 [reported² b.p. 41-44° (75 mm.), n²⁰D 1.4485]. The infrared spectrum showed absorption at 3050 cm.-(C-H valence stretching absorption), 1660 cm.⁻¹ (C=C stretching vibration absorption) and 1672 cm.⁻¹ (C=O). The latter absorption band is consistent with that reported by Bellamy¹⁰ for the carbonyl absorption in vinyl ketones $(1685-1665 \text{ cm}, ^{-1})$. This general procedure was used employing all four types of manganese dioxide.

Anal. Caled. for C₅H₆O: C, 73.17; H, 7.31. Found: C, 73.10; H, 7.39.

The ketone was examined by vapor phase chromatography¹¹ and found to be 98–99% pure in all instances.

The 2,4-dinitrophenylhydrazone of 3-pentadienone was obtained by treating a solution of the ketone [from 2.0 g. of divinylcarbinol and 20.0 g. of manganese dioxide (type C)

(9) H. E. Ramsden, et al., J. Org. Chem., 22, 1602 (1957).

in 50 ml. chloroform] with a solution of 4.0 g. of 2,4-dinitrophenylhydrazine and 8.0 ml. of concentrated sulfuric acid in 90 ml. of methanol. An immediate orange precipitate appeared which was collected by filtration and recrystallized from 95% ethanol, melting with polymerization at 95–102°. The yield was 6.0 g. (96%).

The yield was 6.0 g. (96%). Anal. Calcd. for $C_{11}H_{10}N_4O_4$: C, 50.38; H, 3.81; N, 21.37. Found: C, 50.21; H, 3.71; N, 21.49.

Hydroxy Alkylation of Primary Aromatic Amines

N. V. Bringi¹ and P. V. Deshmukh

Research Laboratories, Hindustan Antibiotics Ltd., Pimpri (near Poona), India

Received May 21, 1962

The one-step reaction of aniline with 1,3-butanediol in the presence of Raney nickel² furnished 4-anilino-2-butanol³ I ($R = C_6H_5$) in 20% yield.

$$\begin{array}{c} \mathrm{RNH}_2 + \mathrm{HOCH}_2 - \mathrm{CH}_2 \mathrm{CHOHCH}_3 \xrightarrow{\mathrm{Ni}} \\ & & & \\ \mathrm{RNHCH}_2 \mathrm{CH}_2 \mathrm{CHOHCH}_3 \\ & & \\ \mathrm{I} \end{array}$$

o-Anisidine, p-anisidine, ethyl p-aminobenzoate, α -naphthylamine, and β -naphthylamine reacted similarly.⁴ The physical properties and analyses of these products are shown in Table I.

Treatment of I ($R = C_6H_5$) with concentrated sulfuric acid at room temperature gave dl-1,2,3,4tetrahydrolepidine in 90% yield. The latter

$$I \xrightarrow{H_2SO_4} (M_1 \xrightarrow{CH_3} (M_2 \xrightarrow{Pd} (M_3 \xrightarrow{CH_3} (M_3$$

was readily dehydrogenated in near quantitative yield to lepidine. 4-p-Anisidino-2-butanol I (R = $p-CH_3OC_6H_4$) gave *dl*-6-methoxy 1,2,3,4-tetrahydrolepidine in 60% yield.⁵ Dehydrogenation furnished 6-methoxylepidine.

4-p-Carbethoxyanilino-2-butanol failed to undergo the intramolecular Friedal-Crafts reaction

(1) To whom inquiries should be addressed.

(2) Raney nickel induced alkylation of primary aromatic amines with primary and secondary alcohols is described by G. N. Kao, B. D. Tilak, and K. Venkataraman, J. Sci. Ind. Res. (India), 14B, 624 (1955); R. G. Rice and E. J. Kohn, J. Am. Chem. Soc., 77, 4052 (1955); C. Anisworth, ibid., 78, 1835 (1956); J. Horyna and O. Cerny, Chem. listy, 50, 381 (1956); Collection Czech. Chem. Commun., 21, 906 (1956); R. G. Rice, E. J. Kohn, and L. W. Daasch, J. Org. Chem., 23, 1352 (1958).

(3) N. V. Bringi and P. V. Deshmukh, *Hindustan Antibiotics Bull.*, **3**, 66 (1960), report the preparation of 4-anilino-1-butanol from the primary glycol.

(4) J. Lichtenberger and L. Dürr, Bull. soc. chim. France, 664 (1956), report the preparation of I ($R = C_5H_4$, and $R = o-CH_1OC_6H_4$) by the reaction of 1,3-butanediol cyclic sulphate and the amine followed by hydrolysis.

⁽⁸⁾ All melting and boiling points are uncorrected.

⁽¹⁰⁾ L. J. Bellamy, "The Infrared Spectra of Complex Molecules," John Wiley & Sons, Inc., New York, N. Y., 1959, p. 136.

⁽¹¹⁾ Vapor phase chromatography was carried out on an Aerograph Gas Chromatographic Instrument, Model A-100C, employing a 5-ft.dinonylphthalate column at 75°.

⁽⁵⁾ This has been prepared previously by catalytic hydrogenation of 6-methoxylepidine; M. Levitz and M. T. Bogert, J. Org. Chem., 10, 341 (1945).